App ROC: Um aplicativo para entender curvas ROC
Conteúdo do artigo principal
Resumo
Um aplicativo ´e apresentado (https://gfvonborries.shinyapps.io/roc_app/) para ajudar estudantes a entender a Curva Caracter´ıstica de Opera¸c˜ao (curva ROC) e conceitos associados com modelos de classifica¸c˜ao bin´aria. Utilizamos um cen´ario de teste diagnostico como motiva¸c˜ao para explicar os conceitos envolvidos e algumas funcionalidades do aplicativo. O App ROC permite que estudantes aprendam de maneira interativa porque e como a curva ROC est´a relacionada com taxas de acur´acia atrav´es da visualiza¸c˜ao de como estas curvas e taxas respondem a modifica¸c˜oes nos parˆametros populacionais.
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
ARNHOLT, A. Using a shiny app to teach the concept of power.Teaching Statistics,v.41, 2018.
CHANG, W.; CHENG, J.; ALLAIRE, J. J.; XIE, Y.; MCPHERSON, J.Shiny: Web application framework for r. R package version 1.5.0. 2020.
FAWCETT, L. Using interactive shiny applications to facilitate research-informed learning and teaching. Journal of Statistics Education. v.26, n.1, p.2-16, 2018.
FREIRE, S. Using shiny to illustrate the probability density function concept: Probability density function.Teaching Statistics, v.41, 2018.
NETTLEMAN, M. D. Receiver operator characteristic (roc) curves. Infection Control and Hospital Epidemiology, v.9, n.8, p.374-377, 1988.
R CORE TEAM. A R: language and environment for statistical computing. Vienna, Austria. 2020.https://www.R-project.org/.
WATSON, J. W.; WHITING, P. F.; BRUSH, J. E. Interpreting a covid-19 test result. British Medical Journal, v.369, n.1808, 2020.