Linear mixed models with two longitudinal factors in the study of sugarcane dry root mass

Conteúdo do artigo principal

Marina Rodrigues Maestre
https://orcid.org/0000-0002-4740-1333
César Gonçalves de Lima
https://orcid.org/0000-0002-7244-4845
Rafael Otto

Resumo

There are agronomic experiments where measurements of a response variable are carried out over more than one longitudinal factor, for example, at different depths over time. These observations, made systematically in each experimental unit, can be correlated and might have heterogeneous variances at the different levels of the longitudinal factor. It was possible to model this correlation between repeated measures and the heterogeneity of variances by using mixed models. Thus, it was necessary to adapt some covariance structures that are common in experiments with only one longitudinal factor. The objective of this study was to use the class of linear mixed models to study sugarcane root dry mass. The experiment was the randomized complete blocks design and the parcels received four nitrogen doses. Repeated measurements were made over two longitudinal factors, one being qualitative ordinal (depths) and one being quantitative (distances from the planting line). It was possible to select a parsimonious covariance
structure and another one to explain the average behavior of the responses through likelihood ratio tests, Wald tests, and using the AIC and BIC information criteria. The adjustment of the selected model was verified by using residual diagnostics graphs.

Detalhes do artigo

Como Citar
Maestre, M. R., Gonçalves de Lima, C., & Otto, R. (2023). Linear mixed models with two longitudinal factors in the study of sugarcane dry root mass. REVISTA BRASILEIRA DE BIOMETRIA, 41(3), 204–217. https://doi.org/10.28951/bjb.v41i3.595
Seção
Articles

Referências

Akaike, H. A New Look at the Statistical Model Identification. IEEE Transactions on automatic control, 19 (6), 716 723 (1974).

Harville, D. A. Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems. Journal of the American Statistical Association, 72 (358), 320-338 (1977).

Laird, N. M.;Ware, J. H. Random-effects models for longitudinal data. Biometrics, 38 (4), 963- 974 (1982).

Lima, C. G. Análise de dados longitudinais provenientes de experimentos em blocos casualizados. 1996. 126p. Tese (Doutorado) - Escola Superior de Agricultura “Luiz de Queiroz", Universidade de São Paulo, Piracicaba, (1996).

Otto, R. Desenvolvimento de raízes e produtividade de cana-de-açúcar relacionados à adubação nitrogenada. 2007. 117p. Dissertação (Mestrado) - Escola Superior de Agricultura “Luiz de Queiroz", Universidade de São Paulo, Piracicaba, (2007).

Pinheiro, J. C.; Bates, D. M. Mixed-effects models in S and S-PLUS.NewYork: (Springer-Verlag, 2000), 528p.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2022)

Schwarz, G. Estimating the dimension of a model. The Annals of Statistics, 6 (2), 461-464 (1978).

Shapiro, S. S.; Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika, 52, 591-611 (1965).

Singer, J. M.; Nobre, J. S.; Rocha, F. M. M. Análise de dados longitudinais. Versão parcial preliminar. São Paulo: USP. Departamento de Estatística. (2018), 306p.

Verbeke, G.; Molenberghs, G. Linear Mixed Models for Longitudinal Data. New York: (Springer-Verlag, 2000), 569p.

West, B. T.;Welch, K. B.; Galecki, A. T. Linear mixed models: A practical guide using statistical software. Boca Raton: (Chapman & Hall/CRC, 2007), 339p.