Bayesian binary regression using power and power reverse link functions: an application to premature birth data

Conteúdo do artigo principal

Rafaela Galo
Robson Marcelo Rossi
https://orcid.org/0000-0001-5386-0571
Diego Corrêa Alves
Rosana Rosseto de Oliveira

Resumo

This study aims to determine factors associated (and quantify) with prematurity through binary regression models, considering power and reverse power link functions, with asymmetric characteristics. As criteria for the model selection, the Bayesian Deviance Information Criterion (DIC), predictive evaluation, and residual analysis. All models analyzed presented similar predictive capacity, however, the model with a reverse power logit link function, with asymmetry parameter =0.336 was chosen, since it presented the lowest value of DIC=3,203, residues that indicated a good fitted of the model. There was an association of prematurity with the following variables: maternal - age over 35 years (OR=1.485), with a partner (OR=0.731), and primiparous (OR=1.307); of pregnancy and childbirth - multiple pregnancy (OR=36.360), cesarean childbirth (OR=1.337) and number of prenatal consultations less than seven (OR=3.305); and newborns of white race/skin (OR=0.731) and presence of congenital malformation (OR=2.663). Considering the proposed criteria, an asymmetric link function (reverse power logit) was the most parsimonious for the model. From this, there were high chances of factors associated with the occurrence of prematurity, indicating the need for actions to minimize them.

Detalhes do artigo

Como Citar
Galo, R., Marcelo Rossi, R., Corrêa Alves, D., & Rosseto de Oliveira, R. (2023). Bayesian binary regression using power and power reverse link functions: an application to premature birth data. REVISTA BRASILEIRA DE BIOMETRIA, 41(2), 131–143. https://doi.org/10.28951/bjb.v41i2.604
Seção
Articles

Referências

Abanto-Valle, C. A., Bazán, J. L., Smith, A. C. State space mixed models for binary responses with skewed inverse links using JAGS. (Instituto de Matemática da UFRJ, Departamento de métodos estatísticos), (2014).

Abanto-Valle, C. A, Dey, D. K., Jiang, X. Binary state space mixed models with flexible link functions: a case study on deep brain stimulation on attention reaction time. Statistics and Its Interface 8, 187-194 (2015).

Albert, J. H., Chib, S. Bayesian Analysis of Binary and Polychotomous Response Data. Journal of the American Statistical Association 88, 669-679 (1983).

Atkinson, A, C. Two graphical displays for outlying and influential observations in regression. Biometrika 68, 13-20 (1981).

Bazán, J. L., Romeo, J. S., Rodrigues, J. Bayesian skew-probit regression for binary response data. Brazilian Journal of Probability and Statistics 28, 467-482 (2014).

Bazán, J. L., Torres-Avilés, F., Suzuki, A. K., Louzada, F. Power and reversal power links for binary regressions: An application for motor insurance policyholders. Applied Stochastic Models in Business and Industry 33, 22-34 (2017).

Borges, L. S. R. Diagnostic Accuracy Measures in Cardiovascular Research. International Journal of Cardiovascular Sciences 29, 218-22 (2016).

Cascaes, A. M., Gauche, H., Baramarchi, F. M., Borges, C. M., Peres, K. G. Prematuridade e fatores associados no Estado de Santa Catarina, Brasil, no ano de 2005: análise dos dados do Sistema de Informações sobre Nascidos Vivos. Cadernos de Saúde Pública 24, 1024-1032 (2008).

Castro-Costa, E., Ferri, C. P., Measures of effect for cross-sectional studies. Brazilian Journal of Psychiatry 30, 399-408 (2008).

Chen, M. H., Dey, D. K., Shao, Q. M. A New Skewed Link Model for Dichotomous Quantal Response Data. Journal of the American Statistical Association 94, 1172-1186 (1999).

Crump, C., Sundquist, K., Sundquist, J., Winkleby, M. A. Gestational age at birth and mortality in young adulthood. American Medical Association 306, 1233-1240 (2011).

Czado, C., Santner, T. J. The effect of link misspecification on binary regression inference. Journal of Statistical Planning and Inference 33, 213-231 (1992).

Dunn, P. K., Smyth, G. K. Randomized Quantile Residuals. Journal of Computational and Graphical Statistics 5, 236-244 (1996).

Fawcett, T. An introduction to ROC analysis. Pattern recognition letters 27, 861-874 (2006).

Geman, S., Geman, D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741 (1984).

Geweke, J. Evaluating the accurating of sampling-based approaches to the calculation of posterior moments. Bayesian Statistics 4, 169-193 (1992).

Giolo, S. R. Introdução à análise de dados categóricos com aplicações, Blucher, (2017).

Guimarães, E. A. D. A., Vieira, C. S., Nunes, F. D. D., Januário, G. D. C., Oliveira, V. C. Prevalência e fatores associados à prematuridade em Divinópolis, Minas Gerais, 2008-2011: análise do Sistema de Informações sobre Nascidos Vivos. Epidemiologia e Serviços de Saúde 26, 91-98 (2017).

Han, Z., Mulla, S., Beyene, J., Liao, G., McDonald, S. D. Maternal underweight and the risk of preterm birth and low birth weight: a systematic review and meta-analyses. International Journal of Epidemiology 40, 65-101 (2011).

Heidelberger, P., Welch, P. D. Simulation Run Length Control in the Presence of an Initial Transient. Institute for Operations Research and the Management Sciences (Informs) 31, 1109-1144 (1983).

Hosmer, D. W., Lemeshow, J, S., Sturdivant, R. X. Applied logistic regression (Wiley, 2013).

Huayanay, A. D. L. C., Bazán, J. L., Cancho, V. G., Dey, D. K. Performance of asymmetric links and correction methods for imbalanced data in binary regression. Journal of Statistical Computation and Simulation 89(9), 1694-1714 (2019).

Kuhn, M., Kjell, J. Applied predictive modeling, Springer, (2013).

Lemonte, A. J., Bazán, J. L. New links for binary regression: an application to coca cultivation in Peru. Test 27, 597-617 (2018).

Liu, S., Allen, A., Fraser, W. Fetal and infant health outcomes. In: Preterm Birth Rate. Canadian Perinatal Health Report, 123-132 (2008).

Mccullagh, P., Nelder, J. A. Generalized linear models. 2.ed. Boca Raton London (Chapman and Hall, 1989).

Nelder, J. A., Wedderburn, R. W. M. Generalized Linear Models. Journal of the Royal Statistical Society - Series A (General) 135(3), 370-384 (1972).

Oliveira, R. R. Nascimento prematuro no Estado do Paraná e no município de Maringá. Tese (doutorado). Maringá: Universidade Estadual de Maringá (2015).

Paulino, C. D. M., Turkman, M. A. A., Murteira, B. Estatística bayesiana (Fundação Calouste Gulbenkia, (2003).

Plummer, M., Best, N., Cowles, K., Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7-11 (2006).

R Core Team. R: A Language and Environment for Statistical Computing (2022).

Robin, X. A., Turck, N., Hainard, A., Tiberti, N., Lisacek, F. et al. pROC: an open source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12(77), (2011).

Rossi, R. M. Introdução aos métodos Bayesianos na análise de dados zootécnicos com uso do WinBUGS e R, Eduem, (2011).

Saigal, S., Doyle, L. W. An overview of mortality and sequele of preterm birth from infancy to adulthood. The Lancet 371(9608), 261-269 (2008).

Silva, A. N., Anyosa, S., Bazán, J. L. Modelagem bayesiana de regressão binária para dados desbalanceados usando novas ligações. Revista Brasileira de Biometria 38(4), 385-417 (2020).

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., Van Der Linde, A. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society - Series B (Statistical Methodology) 64, 583-639 (2002).

Spiegelhalter, D. J., Thomas, A., Best, N., Gilks, W. BUGS 0.5: Bayesian inference using Gibbs sampling manual (version ii) (MRC Biostatistics Unit Archive Service, (1996).

Thomas, A., O'hara, B., Ligges, U., Sturtz, S. Making BUGS Open. R News 6, 12-17 (2006).

Venables, W. N. Modern applied statistics with S, Springer, (2002).

Who. World Health Organization. Born too soon: the global action report on preterm (2012).

Who. World Health Organization. Preterm birth (2022).