Simple models for macro-parasite distributions in hosts

Conteúdo do artigo principal

Gonzalo Lopez
Juan Aparicio

Resumo

The Negative binomial distribution is the most used distribution to model macro-parasite burden in hosts. However, reliable maximum likelihood parameter estimation from data is far from trivial. No closed formula is available and numerical estimation requires sophisticated methods. Using data from the literature, we show that simple alternatives to negative binomial, like zero-inflated geometric or hurdle geometric distributions, produce in some cases a better fit to data than the negative binomial distribution. We derived simple closed formulas for the maximum likelihood parameter estimators which constitutes a significant advantage of these distributions over the negative binomial distribution.

Detalhes do artigo

Como Citar
Lopez, G., & Aparicio, J. (2023). Simple models for macro-parasite distributions in hosts. REVISTA BRASILEIRA DE BIOMETRIA, 41(2), 191–203. https://doi.org/10.28951/bjb.v41i2.616
Seção
Articles

Referências

Atkinson, K. An introduction to numerical analysis (JohnWiley & Sons, 2008).

Bandara, U., Gill, R.&Mitra, R.On computing maximum likelihood estimates for the negative binomial distribution. Statistics & Probability Letters 148, 54–58 (2019).

Bliss, C & Fisher, R. Fitting the negative binomial distribution to biological data. Biometrics 9, 176–200 (1953).

Clark, S. & Perry, J. Estimation of the negative binomial parameter κ by maximum quasilikelihood. Biometrics 45, 309–316 (1989).

Cox, D. R. & Lewis, P. A. The statistical analysis of series of events (Springer, 1966).

Crofton, H. A quantitative approach to parasitism. Parasitology 62, 179–193 (1971).

D’Agostino, R. B. Goodness-of-fit-techniques (Routledge, 2017).

Dai, H., Bao, Y. & Bao, M. Maximum likelihood estimate for the dispersion parameter of the negative binomial distribution. Statistics & Probability Letters 83, 21–27 (2013).

Dietz, E. & Böhning, D. On estimation of the Poisson parameter in zero-modified Poisson models. Computational Statistics & Data Analysis 34, 441–459 (2000).

Gourbière, S., Morand, S. & Waxman, D. Fundamental factors determining the nature of parasite aggregation in hosts. PloS one 10, e0116893 (2015).

Greene, W. Accounting for excess zeros and sample selection in Poisson and negative binomial regression models. NYU Working Paper No. EC-94-10 (1994).

Hall, D. Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics 56, 1030–1039 (2000).

Hynes, H & Nicholas, W. The importance of the acanthocephalan Polymorphus minutus as a parasite of domestic ducks in the United Kingdom. Journal of Helminthology 37, 185–198 (1963).

Johnson, N., Kemp, A. & Kotz, S. Univariate discrete distributions (JohnWiley & Sons, 2005).

Konishi, S & Kitagawa, G. Information criteria and statistical modeling (Springer, 2008).

Lambert, D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34, 1–14 (1992).

Min, Y. & Agresti, A. Randomeffect models for repeated measures of zero-inflated count data. Statistical Modelling 5, 1–19 (2005).

Piegorsch, W. Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics 46, 863–867 (1990).

Pullan, R. & Brooker, S. The global limits and population at risk of soil-transmitted helminth infections in 2010. Parasites & vectors 5, 1–14 (2012).

Saha, K. & Paul, S. Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics 61, 179–185 (2005).

Seo, B, Cho, S. & Chai, J. Frequency distribution of Ascaris lumbricoides in rural Koreans with special reference on the effect of changing endemicity. Korean J Parasitol 17, 105–113 (1979).

Shaw, D., Grenfell, B. & Dobson, A. Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117, 597–610 (1998).

Welsh, A., Cunningham, R., Donnelly, C. & Lindenmayer, D. Modelling the abundance of rare species: statistical models for counts with extra zeros. Ecological Modelling 88, 297–308.

ISSN: 0304-3800 (1996).

Willson, L., Folks, J & Young, J. Multistage estimation compared with fixed-sample-size estimation of the negative binomial parameter k. Biometrics 40, 109–117 (1984).

Woolhouse, M. et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proceedings of the National Academy of Sciences 94, 338–342

(1997).