Probabilistic Modeling of the Coffee Market in Brazil
Conteúdo do artigo principal
Resumo
The coffee is one of the most valuable commodities in the world and in this scenario, Brazil presents itself as the largest producer and exporter in the world. However, the high fluctuations in prices promote insecurity in the agents of the sector. In this sense, the objective of this work is to propose the best probabilistic model for the monthly analysis of prices and to calculate probabilities of occurrences of average prices of coffee bags according to levels of practical interest. To this end, we use historical data provided by COOXUPÉ corresponding to the period from January 1981 to December 2022, arranged into monthly subseries. For supporting the results, goodness of fit test were performed. The results indicated that the Gamma and log-Normal distributions fit the coffee bag price data in all months. The log-Normal distribution outperformed in all months. The Gamma and log-Normal distributions fitted the monthly data of average coffee bags prices. The Log-Normal distribution is more suitable for the probabilistic study of the variable in all months. January, February, and March are the months with the highest probability of higher average values and are therefore the most recommended for coffee trading.
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
Albieri, A. C. de S., & Terra, L. A. A. (2022). Estratégias de diferenciação da commodity de café. Future Studies Research Journal: Trends and Strategies, 14(1), 1–27. https://doi.org/10.24023/futurejournal/2175-5825/2022.v14i1.484
Arêdes, A. F. de, Pereira, M. W. G., Santos, V. F. dos, & Santos, M. L. dos. (2008). Rentabilidade e Risco na Estocagem do Café pelos Produtores na Região de Viçosa-MG. Revista de Economia e Agronegócio, 6(2), 235.
Arêdes, A. F. De, Pereira, M. W. G., & Teixeira, E. C. (2009). Previsão De Preço Do Quilo Do Café Arábica: Uma Aplicação Dos Modelos Arima E Garch.
Camargo, Â. P. de, & Camargo, M. B. P. de. (2001). Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Agrometeorologia, 60(1), 65–68. https://doi.org/https://doi.org/10.1590/S0006-87052001000100008
Capitani, D. H. D., & Mattos, F. (2017). Measurement of commodity price risk: An overview of Brazilian agricultural markets. Revista de Economia e Sociologia Rural, 55(3), 515–532. https://doi.org/10.1590/1234-56781806-94790550306
Carrasco-Gutierrez, C. E., & Almeida, F. M. de M. (2013). Modelagem e Previsão do Preço do Café Brasileiro. Revista de Economia, 7–27. https://doi.org/http://dx.doi.org/10.5380/re.v39i2.23476
Casella, G., & Berger, R. R. (2001). Statistical Inference (2o ed). Thomson Learning.
CONAB - COMPANHIA NACIONAL DE ABASTECIMENTO. (2018). Análise Mensal Café - Outubro de 2018.
CONAB - COMPANHIA NACIONAL DE ABASTECIMENTO. (2019). Análise Mensal Café - Outubro/Novembro de 2019.
CONAB - Companhia Nacional de Abastecimento. (2022). Acompanhamento da Safra Brasileira - Safra 2022. file:///C:/Users/Admin/Downloads/E-book_BoletimZdeZSafrasZcafZ-ZjaneiroZ22.pdf
COOXUPÉ. (2022). Cooxupé Exportação. https://www.cooxupe.com.br/exportacao/exportacao/
Cuaresma, J. C., Hlouskova, J., & Obersteiner, M. (2018). Fundamentals, speculation or macroeconomic conditions? Modelling and forecasting Arabica coffee prices. European Review of Agricultural Economics, 45(4), 583–615. https://doi.org/10.1093/erae/jby010
Devore, J. L. (2018). Probabilidade e estatística para engenharia e ciências (9o ed). Cengage.
Ghoshray, A., & Mohan, S. (2021). Coffee price dynamics: An analysis of the retail-international price margin. European Review of Agricultural Economics, 48(4), 983–1006. https://doi.org/10.1093/erae/jbab027
ICO - International Coffee Organization. (2020, maio). Volatilidade Dos Preços Do Café: O Covid-19 E Os Fatores Fundamentais Do Mercado. http://www.ico.org/documents/cy2019-20/coffee-break-series-2p.pdf
ICO - International Coffee Organization. (2021, fevereiro). Visão Geral do Relatório sobre o Desenvolvimento do Café da OIC de 2020.
ICO - International Coffee Organization. (2022). Relatório sobre o mercado cafeeiro fevereiro 2022. 1–10.
Levin, J., & Fox, J. A. (2004). Estatísticas para ciências humanas (9o ed). Prendice Hall.
Liska, G. R., Cirillo, M. Â., Menezes, F. S. de, & Filho, J. S. de S. B. (2020). A simplex dispersion model for improving precision in the odds ratio confidence interval in mixture experiments. Acta Scientiarum - Technology, 42, 1–10. https://doi.org/10.4025/ACTASCITECHNOL.V42I1.44068
Lucca Filho, E. L. F., Liska, G. R., Santos, J. A., & Matiussi, A. C. (2022). Modelagem probabilística de preços máximos da commodity boi gordo para o estado de São Paulo. Nativa, 10(1), 22–31. https://doi.org/10.31413/nativa.v10i1.13291
MAPA - Ministério da Agricultura Pecuária e Abastecimento. (2022). Conheça a história do café no mundo e como o Brasil se tornou o maior produtor e exportador da bebida.
Mehta, A., & Chavas, J. P. (2008). Responding to the coffee crisis: What can we learn from price dynamics? Journal of Development Economics, 85(1–2), 282–311. https://doi.org/10.1016/J.JDEVECO.2006.07.006
Paiva, C. M. N., de Alcântara, J. N., Campos, R. S., & dos Santos, A. C. (2018). Competitividade Do Café No Mercado Internacional: Uma Análise Econométrica. Agroalimentaria - Universidad de los Andes, 24, 43–58.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Reis, C. J. dos, Beijo, L. A., & Avelar, F. G. (2017). Temperatura mínima esperada para piracicaba-sp via distribuições de valores extremos. Revista Brasileira de Agricultura Irrigada, 11(4), 1639–1650. https://doi.org/10.7127/rbai.v11n400574
Sá Barreto, R. C., & Zugaib, A. C. C. (2016). Dinâmica do mercado internacional de café e determinantes na formação de preços. Economia & Região, 4(2), 7. https://doi.org/10.5433/2317-627x.2016v4n2p7
Salviano, M. F., Groppo, J. D., & Pellegrino, G. Q. (2016). Análise de Tendências em Dados de Precipitação e Temperatura no Brasil Trends Analysis of Precipitation and Temperature Data in Brazil. Revista Brasileira de Metereologia, 31(1), 64–73.
Silveira, R. L. F. da, Mattos, F. L., & Saes, M. S. M. (2016). The Reaction of Coffee Futures Price Volatility to Crop Reports. Emerging Markets Finance and Trade, 53(10), 2361–2376. https://doi.org/10.1080/1540496X.2016.1205976