Bayesian modeling of the Gompertz curve for meat quails growth data considering different error distributions

Conteúdo do artigo principal

Mateus Zubioli Faccin
Robson Marcelo Rossi
https://orcid.org/0000-0001-5386-0571

Resumo

This study applied the Gompertz model to quail growth data, assuming symmetric and asymmetric homoscedastic and heteroscedastic error distributions (Normal, t-Student, Skew normal, and Skew t), undera Bayesian framework. Model selection criteria included the Bayesian Deviance Information Criterion (DIC) and the analysis of residual standard deviation (σ), as well as graphical assessment of the fit. For both homoscedastic error structures (males: DIC=7.186; σ=10.73) and (females: DIC=5.572; σ=11.88) as well as heteroscedastic structures (males: DIC=6.493; σ=0.795) and (females: DIC=4.405; σ=0.824), the best fits were obtained by considering the Skew t distribution for errors. In homoscedastic fits, significant residual asymmetry (λ) was observed only for female quails (CI(λ)=[-8.039;-0.340]), whereas in heteroscedastic fits, the parameter was not significant for both sexes. Additionally, heteroscedasticity (δ) captured in the fits was significant for both sexes (males: CI(δ)=[1.66;2.13] and females: CI(δ)=[1.80;2.26]). Understanding animal growth is crucial for optimizing management and feeding practices, reducing time and costs in production. In this case, the use of nonlinear models considering heteroscedastic and/or asymmetric residual structures contributes to greater accuracy in decision-making.

Detalhes do artigo

Como Citar
Faccin, M. Z., & Rossi, R. M. (2024). Bayesian modeling of the Gompertz curve for meat quails growth data considering different error distributions. REVISTA BRASILEIRA DE BIOMETRIA, 42(3), 260–271. https://doi.org/10.28951/bjb.v42i3.699
Seção
Articles

Referências

Almeida, A., Elian, S. N. & Nobre, J. S. Modificações e alternativas aos testes de Levene e de Brown e Forsythe para igualdade de variâncias e médias (2008). https://doi.org/10.11606/D.45.2006.tde-20210729-145216

Amaral, M. T. R. Abordagem bayesiana para curvas de crescimento com restrições nos parâmetros. MA thesis (Universidade Federal Rural de Pernambuco, PE, 2009).

Azzalini, A. A class of distributions which includes the normal ones. Scandinavian journal of statistics, 171–178 (1985).

Buzolin, P. G. C. Uma abordagem clássica e bayesiana para os modelos de Gompertz e de Richards heteroscedásticos. MA thesis (Universidade Federal de São Carlos, SP, 2005).

Campos, A. M. Uma abordagem Bayesiana para alguns modelos de crescimento na presença de assimetria e heteroscedasticidade. MA thesis (Universidade de São Paulo, SP, 2011).

Campos, A. M. & de Andrade Filho, M. G. Ajuste de curvas de crescimento usando NLGAMLSS. In: 19º Simpósio Nacional de Probabilidade e Estatística, 2010, São Pedro. 19º SINAPE v.1. p.1–5. (2010)

Cancho, V. G., Lachos, V. H. & Ortega, E. M. A nonlinear regression model with skew-normal errors. Statistical papers 51, 547–558 (2010). http://dx.doi.org/10.1007/s00362-008-0139-y

De La Cruz, R. & Branco, M. D. Bayesian analysis for nonlinear regression model under skewed errors, with application in growth curves. Biometrical Journal: Journal of Mathematical Methods in Biosciences 51, 588–609 (2009). https://doi.org/10.1002/bimj.200800154

Diniz, C. A. R., Louzada-Neto, F. & Morita, L. H. M. The multiplicative heteroscedastic Von Bertalanffy model. Brazilian Journal of Probability and Statistics, 71–81 (2012). https://doi.org/10.1214/10-bjps120

Fernandes, V. V. Contribuições sobre o envelope simulado na análise de diagnóstico em modelos de regressão. (2019) https://doi.org/10.11606/D.104.2019.tde-07082019-113800

Flinn, S. & Midway, S. Trends in Growth Modeling in Fisheries Science. Fishes 6 (2021). https://doi.org/10.3390/fishes6010001

Freitas, A. R. d. Curvas de crescimento na produção animal. Revista Brasileira de Zootecnia 34, 786–795 (2005). https://doi.org/10.1590/S1516-35982005000300010

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D., Vehtari, A & Rubin, D. Bayesian data analysis. Boca Raton: CRC Press (2013). https://doi.org/10.1201/b16018

Geweke, J. Evaluating the accuracy of sampling-based approaches to the calculations of posterior moments. Bayesian statistics 4, 641–649 (1992). https://doi.org/10.1093/oso/9780198522669.003.0010

Godoi, L. G. d. A distribuição t-assimétrica univariada: propriedades e inferência. MA thesis. (Universidade de São Paulo, SP, 2007). https://doi.org/10.11606/D.45.2007.tde-20220712-121927

Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical transactions of the Royal Society of London, 513–583 (1825). https://doi.org/10.1098/rspl.1815.0271

Grieser, D. d. O. Estudo do crescimento e composição corporal de linhagens de codornas de corte e postura. PhD thesis. (Universidade Estadual de Maringá, PR, 2012). http://dx.doi.org/10.35818/acta.v10i2.280

Guler, S., Arslan, E., Sari, M. M. & Cetin, O. Comparison of growth curves with non-linear models in Japanese quails of different plumage color. Eurasian Journal of Veterinary Sciences 38 (2022). http://dx.doi.org/10.15312/EurasianJVetSci.2022.380

Heidelberger, P. & Welch, P. D. Simulation run length control in the presence of an initial transient. Operations Research 31, 1109–1144 (1983). https://doi.org/10.1287/opre.31.6.1109

Ligges, M. U. The BRugs Package. (2006).

Lopes, F. B., U., M., Souza, F. M., Assis, A. S. & Brunes, L. C. Análises de dados longitudinais em bovinos nelore mocho por meio de modelos não lineares. Archivos de Zootecnia 65, 123–129 (2016). http://dx.doi.org/10.21071/az.v65i250.478

Louzada, F., Ferreira, P. H. & Diniz, C. A. Skew-normal distribution for growth curve models in presence of a heteroscedasticity structure. Journal of Applied Statistics 41, 1785–1798 (2014). https://doi.org/10.1080/02664763.2014.891005

Mangueira, R. A. F. O modelo logístico com erros assimétricos e heterocedásticos aplicado a dados de altura do milho. MA thesis. Universidade de São Paulo, SP, (2015).

Mazucheli, J., Souza, R. M. & Philippsen, A. S. Modelo de crescimento de Gompertz na presença de erros normais heterocedásticos: um estudo de caso. Revista Brasileira de Biometria 29, 91–101 (2011).

Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News 6, 7–11 (2006).

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foun-dation for Statistical Computing (Vienna, Austria, 2023). http://www.R-project.org.

Ribeiro, M. J. B., Silva, F. F., Macário, M. d. S., Jesus, J. A. S., Brito, C. O., Vesco, A. P. D. & Barbosa, L. T. Choice of non-linear models to determine the growth curve of meat-type quail. Ciência Rural 51 (2020). https://doi.org/10.1590/0103-8478cr20190990

Rossi, R. M., Grieser, D. O., Conselvan, V. & Marcato, S. M. Growth curves in meat-type and laying quail: a Bayesian perspective. Semina: Ciências Agrárias 38, 2743–2754 (2017). http://dx.doi.org/10.5433/1679-0359.2017v38n4Supl1p2743

Rossi, R. M. & Santos, L. A. Bayesian modeling growth curves for quail assuming skewness in errors. Semina: Ciências Agrárias 35, 1637–1648 (2014). http://dx.doi.org/10.5433/1679-0359.2014v35n3p1637

Sahu, S. K., Dey, D. K. & Branco, M. D. A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics 31, 129–150 (2003). https://doi.org/10.2307/3316064

Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. OpenBUGS user manual. (2007).

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. Journal of the royal statistical society: Series b (statistical methodology) 64, 583–639 (2002). https://doi.org/10.1111/1467-9868.00353