Alternativas ao intervalo de confiança clássico frequentista para descrição da severidade de doença foliar com inflação de zeros
Conteúdo do artigo principal
Resumo
Este trabalho apresenta o intervalo percentil bootstrap e o intervalo de credibilidade bayesiano como alternativas ao intervalo de confiança clássico frequentista para análise de dados com inflação de zero. As metodologias indicadas foram aplicadas a dados de severidade do míldio na soja, obtidas por amostragem estratificada em duas cidades do estado de São Paulo: Estiva Gerbi e Piracicaba. As amplitudes dos intervalos de confiança frequentista e percentil bootstrap foram aproximadamente iguais. Para a abordagem bayesiana foram considerados os intervalos de credibilidade da distribuição preditiva a posteriori utilizando a distribuição beta inflacionada de zeros como verossimilhança. Os intervalos de credibilidade apresentaram uma maior amplitude e incluíram nos limites superiores dos intervalos valores acima dos observados nos dados. Concluiu-se que a inferência bayesiana apresenta uma metodologia mais complexa, porém permite incorporar informação a priori referente a aspectos regionais e sazonais, contribuindo para o melhor manejo da doença no campo. Quando não se conhece essas informações, a reamostragem bootstrap não paramétrica é uma alternativa simples para construção de intervalos para dados inflacionados de zeros sem que seja necessário assumir uma função de distribuição para a mesma.
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
ABBOTT, A. M. Statistical sampling methods for soils monitoring. In: PAGE-DUMROESE, D.; NEARY, D.; TRETTIN, C. (Eds.).Scientific background for soil monitoring on National Forests and Rangelands: workshop proceedings. USDA Forest Service Proceedings, p.109–120, 2010.
AMORIM, L. Avaliação de doenças. In: BERGAMIN FILHO, A. E. A. (Ed.) Manual de fitopatologia. São Paulo: Agronômica Ceres,p.647–671, 1995.
BERRAR, D. Introduction tothe non-parametric bootstrap.In: RANGANATHAN, S.; GRIBSKOV, M.; NAKAI, K.; SCHONBACH, C. (Eds.) Encyclopedia of Bioinformatics and Computational Biology. Oxford: Academic Press,p.766-773, 2019.
BOLFARINE, H.; BUSSAB, W. O. Elementos de amostragem. ABE -Projeto Fisher. Edgard Blucher, 2005.
BOLSTAD, W. M. Introduction to Bayesian statistics. New Jersey: John Wiley & Sons, Inc., 2004.
BRIGHENTI, C. R. G.; RESENDE, M.; BRIGHENTI, D.M. Estimação sequencial Bayesiana aplicada à proporção de infestação de psilídeos em alecrim do campo. Revista Brasileira de Biometria, v.29, n.2, p.342–354, 2011.
BRITO, O.; ANDRADE JÚNIOR, V. C. D.; AZEVEDO, A.; DONATO, L.; SILVA, L.; FERREIRA, M. Study of repeatability and phenotypical stabilization in kale using frequentist, bayesian and bootstrap resampling approaches. Acta Scientiarum. Agronomy, v.41, p.42606, 2019.
CARPENTER, J.; BITHELL, J. Bootstrap confidence intervals: when, which, what? a practical guide for medical statisticians. Statistics in Medicine, v.19, p.1141-1164, 2000.
CARRASCO, C. G.; TUTIA, M. H.; NAKANO, E. Y. Intervalos de confiança para os parâmetros do modelo geométrico com inflação de zeros. TEMA (São Carlos), v.13, p.247–255, 2012.
CONAB. Companhia Nacional de Abastecimento . Acomp.safra brasileira de grãos, v.8 –safra 2020/21, n.1 -primeiro levantamento. Brasília, p.1–77, 2020.
CONGDON, P.Applied Bayesian modelling. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., 2003.
CUSI, M. L. A. Estimación de la distribución estadística de la tasa global de fecundidad. Papeles de población, v.13, n.54, p.87-113, 2007.
DUNLEAVY, J. M. Yield reduction in soybean caused by downy mildew. Plant Disease, v.71, n.12,p.1112-1114, 1987.
EFRON, B.; TIBSHIRANI, R. J. An introduction to the bootstrap. Number 57 in Monographs on Statistics and Applied Probability. Boca Raton, Florida, USA: Chapman & Hall/CRC, 1993.
ERTÜRK, H.; KARAKAYA, A.; ÇELIK OGUZ, A. Leaf diseases occurring on barley plants in bala district of ankara province, turkey.e-Journal of New WorldSciences Academy, v. 13, p.204–207, 2018.
FERRARI, S.; CRIBARI-NETO, F. Beta regression for modelling rates and proportions. Journal of applied statistics, v.31, n.7, p.799–815, 2004.
FERREIRA, D.F. Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, v.38,p.109–112, 2014.
GARTHWAITE, P.H.; JOLLIFFE, I.; BYRON, J. Statistical inference. 2. ed. London: Prentice Hall, 1995.
GELMAN, A.; RUBIN, D. Inference from iterative simulation using multiple sequences. Statistical Science, v.7, p.457–511, 1992.
HANLEY, J. A.; MACGIBBON, B. Creating non-parametric bootstrap samples using poisson frequencies. Computer Methods and Programs in Biomedicine, v. 83, n.1, p.57–62, 2006.
HARDWICK, N.; JONES, D.; SLOUGH, J. Factors affecting diseases of winter wheat in england and wales, 1989–98. Plant Pathology, v.50, p.453–462, 2001.
KOWATA, L.; MAY-DE MIO, L.; DALLA PRIA, M.; SANTOS, H. Escala diagramática para avaliar severidade de míldio na soja. Scientia agraria, v.9, n.1, p.105–110, 2008.
LIEB, M. At the interface between domain knowledge and statistical sampling theory: Conditional distribution based sampling for environmental survey (codibas). Catena, v.187, p.1–10, 2020.
LIM, S. M. Inheritance of resistance to peronospora manshuricarace 2 and race 33 in soybean. Phytopathology, v.79,p.877–879, 1989.
MALDONADO, A.; AGUILERA, P.; SALMERÓN, A. Modeling zero-inflated explanatory variables in hybrid bayesian network classifiers for species occurrence prediction. Environmental Modelling & Software, v.82, p.31-43, 2016.
MANGENI, B. C.; WERE, H. K.; NDONG'A, M.; MUKOYE, B. Incidence and severity of bean common mosaic disease and resistance of popular bean cultivars to the disease in western kenya. Journal of Phytopathology, v.168, p.1–15, 2020.
MARTIN, T.; WINTLE, B.; RHODES, J.; KUHNERT, P.; FIELD, S.; LOWCHOY, S.;TYRE, A.; POSSINGHAM, H. Zero tolerance ecology: Improving ecological inference by modelling the source of zero observations. Ecology Letters, v.8, p.1235-1246, 2005.
MICHEREFF, S. J.; NORONHA, M. D. A.; MAFFIA, L. A. Tamanho de amostras para avaliação da severidade da queima das folhas do inhame. Summa Phytopathologica, v.34, n.2, p.189-191, 2008.
MORALEJO, E.; BORRAS, D.; GOMILA, M.; MONTESINOS, M.; ADROVER, F.; JUAN, A.; NIETO, A.; OLMO, D.; SEGUI, G.; LANDA, B. Insights into the epidemiology of pierce’s disease in vineyards of mallorca, spain. Plant Pathology, v.68, 2019
NOGUEIRA, D. A.; SÁFADI, T.;FERREIRA, D. F. Avaliação de critérios de convergência univariados para o método de Monte Carlo via cadeias de Markov. Revista Brasileira de Estatística, v.65, n.224, p.59–88, 2004.
PEREIRA, J. E.; SILVA, J. F. V.; DIAS, W. P.; SOUZA, G. S. Intervalo de confiança “bootstrap” como ferramenta para classificar raçaas do nematoide de cisto da soja. Pesquisa Agropecuária Brasileira, v.35, p.271–275, 2000.
PHILLIPS, D. V. Downy mildew. In: HARTMAN, G.; SINCLAIR, J.; J.C., R. (Eds.) Compendium of soybean diseases. 4.ed. St. Paul: APS Press, 1999.
PICININI, E. C.; FERNANDES, J. M. Doenças desoja: Diagnose, epidemiologiae controle. 3.ed. Passo Fundo, RS: Embrapa, 2003.
PINTO, F.; MELO-CRISTINO, J.; RAMIREZ, M. A confidence interval for the wallace coefficient of concordance and its application to microbial typing methods. PloS one, v.3, p.e3696, 2008.
RAO, J. N. K.; WU, C. F. J. Resampling inference with complex survey data. Journal of the American Statistical Association, v.83, n.401,p.231–241, 1988.
SEVERIANO, A.; CARRIÇO, J.; ROBINSON, D.; RAMIREZ, M.; PINTO, F. Evaluation of jack knife and bootstrap for defining confidence intervals for pairwise agreement measures. PloS one, v.6,p.e19539, 2011.
SILVA, O.; SANTOS, H.; DALLAPRIA, M.; MAY-DEMIO, L. Potassium phosphite for control of downy mildew of soybean. Crop Protection, v.30, n.6, p.598-604, 2011.
SILVA, S. X. B.; LARANJEIRA, F. F.; SOARES, A. C. F.; MICHEREFF, S. M. Amostragem, caracterização de sintomas e escala diagramática da mancha graxa dos citros (mycosphaerella citri) no recôncavo baiano. Ciência Rural, v.38, p.896–899, 2009.
SITTER, R. R. A resampling procedure for complex survey data. Journal of the American Statistical Association, v.87, n.419, p.755–765, 1992.
SONGTAO, B.; TIAN, M.; CHANG, Q. Estimating the severity of apple mosaic disease with hyperspectral images. International Journal of Agricultural and Biological Engineering, v.12, p.148–153, 2019.
TAN, S.; TAN, S. The correct interpretation of confidenceintervals. Proceedings of Singapore Healthcare, v.19, p.276–278, 2010.
USDA. Departamento de agricultura dos Estados Unidos. Relatórios USDA.2020.
ZIENTEK, L. R.; THOMPSON,B. Applying the bootstrap to the multivariate case: Bootstrap component/factor analysis. Behavior Research Method, v.39, n.2, p.318–325, 2007.