Dealing with highly kurtotic count data with excess zeroes: comparing different treatments in the control of dairy cattle gastrointestinal parasites

Conteúdo do artigo principal

Fernanda Roquim
Renato Lima
Luiz Nakamura
https://orcid.org/0000-0002-7312-2717
Thiago Ramires
Yuly Blanco

Resumo

In this paper we provide a flexible statistical framework to compare different treatments, conventional and selective strategical (ST), in the gastrointestinal parasites (G. duodenalis) control of dairy cattle through the count of Giardia cysts. Distributional regression models are considered, allowing the modelling of not only the average of these counts, but also the extra probability that calves do not present any cysts. Our findings show a positive relationship between the count of cysts with the animal body temperature and in animals until the age 150 days (and then, the count decreases). Higher responses are observed during summertime. Animals submitted to the ST present a lower count of cysts than the ones submitted to the conventional option. Further, there is a smaller chance that the sample does not present any cyst during wintertime. Conversely, this chance increases if the animal is submitted to the ST and in the earliest ages. Finally, the probability that no cysts are observed in the sample is roughly constant up to 40 o C and then rapidly increases. Hence, distributional regression models provide a great alternative to explicitly select features to model different aspects (average and extra probability of zero) of the count of Giardia cysts.

Detalhes do artigo

Como Citar
Roquim, F., Lima, R., Nakamura, L., Ramires, T., & Blanco, Y. (2023). Dealing with highly kurtotic count data with excess zeroes: comparing different treatments in the control of dairy cattle gastrointestinal parasites. REVISTA BRASILEIRA DE BIOMETRIA, 41(4), 412–423. https://doi.org/10.28951/bjb.v41i4.646
Seção
Articles
Biografia do Autor

Fernanda Roquim, Universidade Federal de Lavras

Universidade Federal de Lavras, Programa de Pós-Graduação em Estatística e Experimentação Agropecuária, Câmpus Universitário, Postcode: 37200-900, Lavras, Minas Gerais, Brazil.

Renato Lima, Universidade Federal de Lavras

Universidade Federal de Lavras, Departamento de Estatística, Câmpus Universitário, Postcode: 37200-900, Lavras, Minas Gerais, Brazil.

Luiz Nakamura, Universidade Federal de Lavras

Universidade Federal de Lavras, Departamento de Estatística, Câmpus Universitário, Postcode: 37200-900, Lavras, Minas Gerais, Brazil

Thiago Ramires, Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná. Departamento de Matemática. 635 Marcílio Dias St, Jardim Paraíso, 86812-460, Apucarana, Paraná, Brazil

Yuly Blanco, Universidad Cooperativa de Colombia

Grupo de Investigación GRICA. Universidad Cooperativa de Colombia UCC. Programa Académico de Medicina Veterinaria y Zootecnia. Campus Bucaramanga, Calle 30 No. 33-51, Postcode: 680002, Santander, Colombia

 

Referências

Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).

Barbieri, J. M., Blanco, Y. A. C., Lima, R. R., Lopes, M. A., Reis, E. M. B., Rocha, C. M. B. M., Coutinho, A. S. & Guimarães, A. M. Giardiasis as a neglected disease in Brazil: Systematic review of 20 years of publications. PLOS Negl. Trop. Dis. 11, e0006005 (2017).

Blanco, Y. A. C. Efeito e custos do tratamento estratégico seletivo no controle de parasitoses gastrointestinais em bezerras leiteiras Master’s dissertation (Federal University of Lavras, Brazil, 2015).

Blanco, Y. A. C., Barbieri, J. M., Lima, R. R., Lopes, M. A., Reis, E. M. B., Rocha, C. M. B. M., Coutinho, A. S. & Guimarães, A. M. Economic evaluation and efficacy of strategic-selective treatment of gastrointestinal parasites in dairy calves. Rev. Bras. Parasitol. Vet. 26, 123–128 (2017).

Coelho, H. C., Durigan, M., Leal, D. A. G., Schneider, A. B., Franco, R. M. B. & Singer, S. M. Giardiasis as a neglected disease in Brazil: Systematic review of 20 years of publications. PLOS Negl. Trop. Dis. 11, e0006005 (2017).

Dunn, P. K. & Smyth, G. K. Randomized quantile residuals. J. Comput. Graph. Stat. 5, 236–244 (1996).

Efstratiou, A., Ongerth, J. E. & Karanis, P. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks - An update 2011-2016. Water Res. 114, 14–22 (2017).

Ehsan, A. M., Geurden, T., Casaert, S., Parvin, S. M., Islam, T. M., Ahmed, U. M., Levecke, B., Vercruysse, J. & Claerebout, E. Assessment of zoonotic transmission of Giardia and Cryptosporidium between cattle and humans in rural villages in Bangladesh. Plos ONE 10, e0118239 (2015).

Eilers, P. H. C. & Marx, B. D. Flexible smoothing with B-splines and penalties. Statist. Sci. 11, 89–121 (1996).

Eilers, P. H. C., Marx, B. D. & Durbán, M. Twenty years of P-splines. SORT 39, 149–186 (2015).

Einarsson, E., Ma’ayeh, S. & Svärd, S. G. An up-date on Giardia and giardiasis. Curr. Opin. Microbiol. 34, 47–52 (2016).

Embrapa. Anuário Leite 2021: saúde única e total https://www.embrapa.br/busca-de publicacoes/-/publicacao/1132875/anuario-leite-2021-saude-unica-e-total. 2021.

Geurden, T., Vercruysse, J. & Claerebout, E. Is Giardia a significant pathogen in production animals? Exp. Parasitol. 124, 98–106 (2010).

Hastie, T. J. & Tibshirani, R. J. Generalized additive models (Chapman & Hall, London, 1990).

Heller, G. Z., Robledo, K. P. & Marschner, I. C. Distributional regression in clinical trials: treatment effects on parameters other than the mean. BMC Med. Res. Methodol. 22, 56 (2022).

Hernández-Gallo, N. & Cortés-Vecino, J. A. Cryptosporidium spp. and Giardia spp. prevalence and risk factors in dairy calves of the north-western zone of the Bogota Savanna. Rev. Salud Publica 14, 169–181 (2012).

Morales, L. E. & Higuchi, A. Is fish worth more than meat? – How consumers’ beliefs about health and nutrition affect their willingness to pay more for fish than meat. Food. Qual. Prefer. 65, 101–109 (2018).

Nakamura, L. R., Rigby, R. A., Stasinopoulos, D. M., Leandro, R. A., Villegas, C. & Pescim, R. R. Modelling location, scale and shape parameters of the birnbaumsaunders generalized t distribution. J. Data Sci. 15, 221 237 (2017).

Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. Ser. A Stat. Soc. 135, 370–384 (1972).

Oliveira, P., Ruas, J. L., Riet-Correa, F., Coelho, A. C. B., Santos, B. L., Marcolongo-Pereira, C., Sallies, E. S. V. & Schild, A. L. Doenças parasitárias em bovinos e ovinos no sul do Brasil: frequência e estimativa de perdas econômicas. Pesq. Vet. Bras. 37, 797–801 (2017).

Ostfeld, J. K. & Keesing, F. Impacts of large mammals on movements of the pouched mouse (Saccostomus mearnsi) in central Kenya. Afr. J. Ecol. 57, 2–9 (2018).

Plutzer, J., Ongerth, J. & Karanis, P. Giardia taxonomy, phylogeny and epidemiology: facts and open questions. Int. J. Hyg. Environ. Health 213, 321–333 (2010).

R Core Team. R: A language and environment for statistical computing Software available at https://www.R project.org. 2022.

Ramires, T. G., Nakamura, L. R., Righetto, A. J., Carvalho, R. J., Vieira, L. A. & Pereira, C. A. B. Comparison between highly complex location models and GAMLSS. Entropy 23, 469 (2021).

Ramires, T. G., Nakamura, L. R., Righetto, A. J., Pescim, R. R., Mazucheli, J. & Cordeiro, G. M. A new semiparametric Weibull cure rate model: fitting different behaviors within GAMLSS. J. Appl. Stat. 46, 2744–2760 (2019).

Ramires, T. G., Nakamura, L. R., Righetto, A. J., Pescim, R. R., Mazucheli, J., Rigby, R. A. & Stasinopoulos, D. M. Validation of stepwise-based procedure in GAMLSS. J. Data Sci. 19, 96–110 (2021).

Rigby, R. A. & Stasinopoulos, D. M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. C Appl. Stat. 54, 507–554 (2005).

Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z. & De Bastiani, F. Distributions for modelling location, scale, and shape: using GAMLSS in R (CRC Press, Boca Raton, 2019).

Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

Stasinopoulos, D. M. & Rigby, R. A. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23, 1–46 (2007).

Stasinopoulos, M. D., Rigby, R. A., Heller, G. Z., Voudouris, V. & De Bastiani, F. Flexible regression and smoothing: using GAMLSS in R (CRC Press, Boca Raton, 2017).

Taylor, M., Coop, R. L. & Wall, R. L. Veterinary parasitology 3rd (Wiley-Blackwell, New York, 2013).

Van Buuren, S. & Fredriks, M. Worm plot: a simple diagnostic device for modelling growth reference curves. Stat. Med. 20, 1259–1277 (2001).

Volpato, A., Tonin, A. A., Machado, G., Stefani, L. M., Campigotto, G., Glombowsky, P., Gaslli, G. M., Favero, J. F. & Silva, A. S. Gastrointestinal protozoa in dairy calves: identification of risk factors for infection. Rev. MVZ. Córdoba 22, 5910–5924 (2017).

Voudouris, V., Gilchrist, R., Rigby, R., Sedwick, J. & Stasinopoulos, D. Modelling skewness and kurtosis with the BCPE density in GAMLSS. J. Appl. Stat. 39, 1279–1293 (2012).

Xiao, L. & Fayer, R. Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. Int. J. Parasitol. 38, 1239–1255 (2008).