Bayesian analysis of the growth of pears in the cultivate Shinseiki using non-linear models
Conteúdo do artigo principal
Resumo
The pear of the Pyrus genus is the third most consumed fruit in Brazil, however, internal production is low and most demand is obtained through imports. Brazil has favorable conditions for its cultivation and one of its main economic sectors is agriculture, being responsible for generating a large number of jobs and income for the country. In this sense, studies related to this fruit can provide information and encourage its production. Using non-linear models, it is possible to identify growth patterns such as fruit length and diameter, which can help determine the ideal harvest point. Therefore, the goal of this article was to compare the Logistic and Gompertz non-linear models in describing the growth curves in diameter and length of the Asian pear tree using the Bayesian approach. The results indicated the Logistic model as the best to describe these two variables and provided asymptotic averages of 70.0607 and 79.706 for length and diameter, respectively.
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
Brunetto, G., Melo, G. W. B. d., Toselli, M., Quartieri, M. & Tagliavini, M. The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Revista Brasileira de Fruticultura 37, 1089–1104 (2015).
Brunetto, G., Nava, G., Ambrosini, V. G., Comin, J. J. & Kaminski, J. The pear tree response to phosphorus and potassium fertilization. Revista Brasileira de Fruticultura 37, 507–516 (2015).
Carra, B., Pasa, M. S., Abreu, E. S., Dini, M., Pasa, C. P., Ciotta, M. N., Herter, F. G. & Mello-Farias, P. Plant growth regulators to increase fruit set and yield of ‘Rocha’pear trees in Southern Brazil. Anais da Academia Brasileira de Ciências 93, e20180680 (2021).
Casella, G. & George, E. I. Explaining the Gibbs sampler. The American Statistician 46, 167–174 (1992).
Cavalini, F. C., Jacomino, A. P., Lochoski, M. A., Kluge, R. A. & Ortega, E. M. M. Maturity indexes for’Kumagai’and’Paluma’guavas. Revista Brasileira de Fruticultura 28, 176–179 (2006).
Dias, A., Muniz, J., Silva, F. & Savian, T. Modelos não-lineares aplicados aos dados de crescimento de frutos de mangueira Palmer (pp. 634-638). Revista da Estatística daUniversidade Federal de Ouro Preto 3 (2014).
FAO, F. Production crops pears 1961-2017 2017.
Fernandes, F. A., Fernandes, T. J., Pereira, A. A., Meirelles, S. L. C. & Costa, A. C. Growth curves of meat-producing mammals by von Bertalanffy’s model. Pesquisa Agropecuária Brasileira 54 (2019).
Fernandes, T. J., Pereira, A. A., Muniz, J. A. & Savian, T. V. Seleção de modelos não lineares para a descrição das curvas de crescimento do fruto do cafeeiro (2014).
Fioravanço, J. & Antoniolli, L. Pera: o produtor pergunta, a Embrapa responde. Embrapa Uva e Vinho-Col Criar Plantar ABC 500P/500R Saber (INFOTECA-E) (2016).
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis (Chapman and Hall/CRC, 1995).
Guedes, M., Muniz, J., Silva, F. & Aquino, L. Bayesian analysis of growth curve of Santa Inês lambs. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 57, 415–417 (2005).
Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications (1970).
IBGE, I. I. Levantamento Sistemático da Produção Agrícola: Estatística da Produção Agrícola
Jiang, Z., Tang, F., Huang, H., Hu, H. & Chen, Q. Assessment of genetic diversity of Chinese and pear landraces (Pyrus pyrifolia Nakai) using simple sequence repeat markers. HortScience 44, 619–626 (2009).
KIST, B. B. e. a. Anuário brasileiro da fruticultura. Santa Cruz do Sul: Editora Gazeta, 88p (2018).
Lombardi, S. R. B., Moraes, D. M. d. & Camelatto, D. Avaliação do crescimento e da maturação pós-colheita de pêras da cultivar Shinsseiki. Pesquisa Agropecuária Brasileira 35, 2399–2405 (2000).
Lopes, T. P., Avila, S., Zielinski, A. A. F., Nogueira, A. & Wosiacki, G. Comparação dos princípios tecnológicos do processamento de suco de maçã aos dos de pêra. Revista Brasileira de Tecnologia 5, 593–605 (2011).
Machado, B. D., Magro, M., Rufato, L., Bogo, A., Kreztschmar, A. A. & Simões, F. Compatibilidade fenotípica entre cultivares de pereiras europeias eporta-enxertos de marmeleiro. Ciência Rural 45, 1551–1556 (2015).
Mello, L. M. R. d. Produção e mercado da pera de 2001 a 2010: panorama nacional e mundial. Embrapa Uva e Vinho-Comunicado Técnico (INFOTECA-E) (2013).
Nakasu, B. et al. A cultura da pera. (Brasília, DF: Embrapa Informação Tecnológica: Pelotas: Embrapa Clima . . ., 2007).
Pasa, M. d. S., Fachinello, J. C., Rosa Júnior, H. F. d., Franceschi, É. D., Schmitz, J. D. & Souza, A. L. K. d. Performance of’Rocha’and’Santa Maria’pears as affected by planting density. Pesquisa Agropecuária Brasileira 50, 126–131 (2015).
Paulino, C. D. M., Turkman, M. A. A. & Murteira, B. Estatística bayesiana (2003).
Prado, T., Savian, T. & Muniz, J. Ajuste dos modelos Gompertz e Logístico aos dados de crescimento de frutos de coqueiro anão verde. Ciência Rural 43, 803–809 (2013).
R Core Team. R: A language and environment for statistical computing Vienna, Austria, 2023. https://www.R-project.org/.
Ribeiro, T. D., Mattos, R. W. P. d., Morais, A. R. d. & Muniz, J. A. Description of the growth of pequi fruits by nonlinear models. Revista brasileira de fruticultura 40 (2018).
Ribeiro, T. D., Savian, T. V., Fernandes, T. J. & Muniz, J. A. The use of the nonlinear models in the growth of pears of ‘Shinseiki’cultivar. Ciência Rural 48 (2017).
Rufato, L., Luz, A. R., de Souza, D. S., Muniz, J., Machado, B. D. & Ferreira, A. S. Pear production in Brazil: a review. Comunicata Scientiae 12, e3865–e3865 (2021).
Santos, A. L. P. d. et al. Métodos geradores de modelos de crescimento e decrescimento aplicados às ciências agrárias (2019).
Seber, G. A. & Wild, C. J. Nonlinear regression. hoboken. New Jersey: John Wiley & Sons 62, 1238 (2003).
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation andWAIC. Statistics and computing 27, 1413–1432 (2017).
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P.-C. Rank-normalization, folding, and localization: An improved R for assessing convergence of MCMC (with discussion). Bayesian analysis 16, 667–718 (2021).