A comprehensive statistical analysis of Malaria dynamics in the Adamawa region of Cameroon, from 2018 to 2022
Conteúdo do artigo principal
Resumo
Malaria remains a prominent public health concern in Cameroon, with the potential for epidemic outbreaks, necessitating a robust understanding of its dynamics. This paper uses routinely collected surveillance data from health facilities in the Adamawa Region since January 2018. By applying statistical analysis, this study aims to enhance comprehension, enable data predictions, and facilitate informed decision-making for public health policy implementation. Focusing on weekly health districts data spanning from 2018 to 2022, our analysis employs key statistical metrics for central tendency, data spread, distribution shape, and variable dependence. The study reveals distinctive trends, highlighting peak malaria transmission periods consistently occurring between August and November each year. The highest weekly recorded case count in any health district reached 1,294. The data exhibits leptokurtic distributions, skewed to the left of the median. And in 2022, 11% of the population was reported to have contracted malaria. Despite an overall region-wide average growth rate of -1.21% over the past five years, maintaining vigilant attention to this critical health issue is imperative. Auto dependence analysis indicates that observations are weekly correlated, assuming the time series as stationary. The stationarity has been confirmed by ADF and KPSS tests that we performed. This comprehensive data analysis helps our understanding of the malaria landscape in the Adamawa Region of Cameroon. The paper also recommends the inclusion of additional variables in data collection for a more holistic perspective. These findings provide a basis for the formulation and implementation of targeted interventions by relevant stakeholders, aiding in the prediction of future cases and ultimately contributing to the effective management of malaria in the region.
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
Adewole, A. I., Amurawaye, F. F. & Oladipupo J. O. Time series analysis of malaria fever prevalence in Ogun State. TASUED Journal of Pure and Applied Sciences 2 (1), 201-211 (2023).
Alhassan, E. A., Adjei, M. I., Aidoo, E. Time Series Analysis of Malaria Cases in Kasena Nankana Municipality. International Journal of Statistics and Applications 7 (2), 43-56 (2017) DOI: 10.5923/j.statistics.20170702.01.
Batoure Bamana, A., Shafiee Kamalabad, M., & Oberski, D. L. A systematic literature review of time series methods applied to epidemic prediction. Informatics in Medicine Unlocked (2024), doi: https://doi.org/10.1016/j.imu.2024.101571
Binu, V. S., Mayya, S. S. & Dhar, M. Some basic aspects of statistical methods and sample size determination in health science research. Ayu 35, 119-23 (2014). https://doi.org/10.4103/0974-8520.146202
Brockwell, P. J. & Davis R. A. Introduction to time series and forecasting. Springer, 3rd Edition 2016.
Chen, K., van Laarhoven, T. & Marchiori, E. Gaussian processes with skewed Laplace spectral mixture kernels for long-term forecasting. Mach Learn 110, 2213–2238 (2021). https://doi.org/10.1007/s10994-021-06031-5.
Danwang, C., Khalil, E., Achu, D., Ateba, M., Abomabo, M., Souopgui, J., De Keukeleire, M. & Robert, A. Fine scale analysis of malaria incidence in under-5: hierarchical Bayesian spatio-temporal modelling of routinely collected malaria data between 2012–2018 in Cameroon. Nature portfolio, Scientific Reports 11, (2021) 11408| https://doi.org/10.1038/s41598-021-90997-8.
Demir, S. (2022). Comparison of Normality Tests in Terms of Sample Sizes under Different Skewness and Kurtosis Coefficients. International Journal of Assessment Tools in Education, 9 (2), 397-409. https://doi.org/10.21449/ijate.1101295.
Dian, N. D., Mohd Salleh, A. F., Rahim, M. A. F. A., Munajat, M. B., Abd Manap, S. N. A., Ghazali, N., Hassan, N. W. & Idris, Z. M. Malaria Cases in a Tertiary Hospital in Kuala Lumpur, Malaysia: A 16-Year (2005–2020) Retrospective Review. Trop. Med. Infect. Dis. 6, 177 (2021) https://doi.org/10.3390/tropicalmed6040177.
Esayas, E., Tufa, A., Massebo, F., Ahemed, A., Ibrahim, I., Dillu, D., Bogale, E. A., Yared, S., & Kassaye, K. Malaria epidemiology and stratification of malaria incidence in the malaria elimination setting. Harari Region, Eastern Ethiopia 2. University of Sussex. (2020) https://hdl.handle.net/10779/uos.23478434.v2.
Esum, M. E., Ndip, R. N. & Sumbele I. Trends of Malaria in the South West Region of Cameroon: Overview, Challenges and Perspectives. SDG3, Why It Matters, UN Cameroon, (2022).
Eunice, A., Wanjoya, A. & Luboobi, L. Statistical Modeling of Malaria Incidences in Apac District, Uganda. Open Journal of Statistics 7, 901-919 (2017) https://doi.org/10.4236/ojs.2017.76063.
Guetterman, T. C. Basics of statistics for primary care research. Family medicine and community health 7 (2), e000067 (2019).
Hatem, G., Zeidan, J., Goossens, M., and Moreira, C. Normality testing methods and the importance of skewness and kurtosis in statistical analysis. BAU Journal - Science and Technology 3 (2), Art.7 (2022) DOI: https://doi.org/10.54729/KTPE9512
Hilton, M., Alexandru, R., and Dragotti, P. L. "Time Encoding Using the Hyperbolic Secant Kernel," 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2304-2308 (2021) doi: 10.23919/Eusipco47968.2020.9287806.
Hornok, A., & Larsson, R. The finite sample distribution of the KPSS test. The Econometrics Journal 3 (1), 108–121. (2000) http://www.jstor.org/stable/23115053.
Hyndman, R. J. & Athanasopoulos, G. Forecasting: Principles and Practice. (Third Print Edition, OTEXTS 2021).
Ibrahim OR, Lugga AS, Ibrahim N, Aladesua O, Ibrahim LM, Suleiman BA, Suleiman BM. Impact of climatic variables on childhood severe malaria in a tertiary health facility in northern Nigeria. Sudan J Paediatr. 21 (2), 173-181 (2021). doi: 10.24911/SJP.106-1599226765. PMID: 35221429; PMCID: PMC8879348.
Kaur, P., Stoltzfus, J. & Yellapu, V. Descriptive statistics. Int J Acad Med 4, 60-3 (2018).
Landoh, E. D., Potougnima, T., Bayaki, S., Khin, S. Tint., Sheba, N. G., Wasswa, P. & de Jager, C. Morbidity and mortality due to malaria in Est Mono district, Togo, from 2005 to 2010: a times series analysis. Malaria Journal 11, 389 (2012). https://doi.org/10.1186/1475-2875-11-389
Li, G., Zhang, D., Chen, Z., Feng, D., Cai, X., Chen, X., Tang, S. & Feng, Z. Risk factors for the accuracy of the initial diagnosis of malaria cases in China: a decision-tree modelling approach. Malaria Journal 21, (11) (2022) https://doi.org/10.1186/s12936-021-04006-4.
Lit, R., S.J. Koopman, and A.C. Harvey (2023), Time Series Lab: https://timeserieslab.com.
Makridakis, S., Assimakopoulos, V. & Spiliotis, E. Objectivity, reproducibility and replicability in forecasting research. International Journal of Forecasting 34 (4), 835–838, (2018). http://dx.doi.org/10.1016/j.ijforecast.2018.05.001
Mbouna, A. D., Tompkins, A. M., Lenouo, A., Asare, E. O., Yamba, E. I. & Tchawoua C. Modelled and observed mean and seasonal relationships between climate, population density and malaria indicators in Cameroon. Malaria Journal 18, 359 (2019) https://doi.org/10.1186/s12936-019-2991-8.
Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu C. & Keshri A. Descriptive statistics and normality tests for statistical data. Ann Card Anaesth 22 67-72 (2019). https://doi.org/10.4103%2Faca.ACA_157_18
Mousa, A., Al-Taiar, A. Anstey, N. M., Badaut, C., Barber, B. E. & Bassat Q. The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: A systematic review and a pooled multicentre individual-patient meta-analysis. PLoS Med 17, (10) e1003359 (2020). https://doi.org/10.1371/journal.pmed.1003359
Moskalaï Ngossaha, J., Ynsufu, A., Batoure Bamana, A., Djeumen, R., Bowong Tsakou, S. & Ayissi Eteme, A. Towards a Flexible Urbanization Based Approach for Integration and Interoperability in Heterogeneous Health Information Systems: Case of Cameroon. In: Tchakounte, F., Atemkeng, M., Rajagopalan, R.P. (eds) Safe, Secure, Ethical, Responsible Technologies and Emerging Applications. SAFER-TEA 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 566. Springer, (2024), Cham. https://doi.org/10.1007/978-3-031-56396-6_16
Mushtaq, R. Augmented Dickey Fuller Test. 2011. http://dx.doi.org/10.2139/ssrn.1911068.
Novák, L.; Novák, D. On Taylor Series Expansion for Statistical Moments of Functions of Correlated Random Variables. Symmetry 12, 1379 (2020). https://doi.org/10.3390/sym12081379.
Ozulonye, O. S., Okolo, A., Torsen, E. & Tiwah O. J. Multivariate time series analysis in modelling malaria cases in Jimeta metropolis of Adamawa state, Nigeria. FUDMA Journal of Sciences 6 (3), 62-69 (2022). http://dx.doi.org/10.33003/fjs-2022-0603-970
Paparoditis, E. & Politis, D. N. The asymptotic size and power of the augmented Dickey–Fuller test for a unit root, Econometric Reviews 37 (9), 955-973, (2018) DOI: 10.1080/00927872.2016.1178887.
Ramirez, J. H., Urtasun, A., Roselló, M., Garrido, M., Peman, J. & Otero, M. C. Estudio descriptivo de los casos de malaria en la población pediátrica en un hospital de referencia de Valencia, Espana, entre 1993 y 2015. An Pediatr (Barc); 92 21-27 (2020). https://doi.org/10.1016/j.anpedi.2019.03.008
Rodríguez, S. N. I., Rodríguez, J. A. I., Rodríguez, J. C. P. & Olivera, M. J. Malaria mortality in Colombia from 2009 to 2018: a descriptive study. Journal of the Brazilian Society of Tropical Medicine 54, e0441-2020 (2021) https://doi.org/10.1590/0037-8682-0441-2020.
Satake, E. B. Statistical Methods and Reasoning for the Clinical Sciences Evidence-Based Practice. Ist ed. San Diego: Plural Publishing, Inc. 1-19 (2015).
Shin, Y., Schmidt, P. The KPSS stationarity test as a unit root test, Economics Letters 38 (4),387-392 (1992) , ISSN 0165-1765, https://doi.org/10.1016/0165-1765(92)90023-R.
Sohanang Nodem F. S., Ymele D., Fadimatou M., Fodouop S. C. Malaria and Typhoid Fever Coinfection among Febrile Patients in Ngaoundéré (Adamawa, Cameroon): A Cross-Sectional Study. J Parasitol Res. (2023) doi: 10.1155/2023/5334813. PMID: 37790287; PMCID: PMC10545472.
Talipouo, A., Ngadjeu, C. S., Doumbe-Belisse, P., Djamouko-Djonkam, L., Sonhafouo-Chiana, N., Kopya, E., Bamou, R., Awono-Ambene, P., Woromogo, S., Kekeunou, S., Wondji, C. S. & Antonio-Nkondjio, C. Malaria prevention in the city of Yaoundé: knowledge and practices of urban dwellers. Malaria Journal 18 (167) (2019) https://doi.org/10.1186/s12936-019-2799-6.
Twumasi-Ankrah, S, Pels, W. A., Nyantakyi, K. & Addo, D. K. Comparison of Statistical Techniques for Forecasting Malaria Cases in Ghana. J Biostat Biometric App 4, (1) 102 (2019).
Wahedi JA, Ande AT, Oduola AO, Obembe A, Tola M, Oyeniyi TA, Awolola TS. Dynamics of malaria vector indices in two vegetation zones within North Eastern Adamawa State, Nigeria. Trop Biomed. (2020). doi: 10.47665/tb.37.3.637. PMID: 33612778.
Yihang, D. Descriptive Statistics and Its Applications, Highlights in Science, Engineering and Technology. AMMMP 47, (2023). https://doi.org/10.54097/hset.v47i.8159
Zhang Q. Data science approaches to infectious disease surveillance. Phil. Trans. R. Soc. 380 (2021) doi.org/10.1098/rsta.2021.0115.